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ABSTRACT

An cmbedded system is called multi-mode when it supports
multiple applications by dynamically reconfiguring the system
functionality. This paper proposes a hardware-software
cosynthesis technique for muln-mode muhi-task embedded
systems with realtime censtraints. The cosynthesis problem
involves three subproblems: selection of appropnate processing
elements, mapping and scheduling of function moduics to the
selected processing elements, and schedule analysis. The
proposed cosynthesis framework defines an iteration loop of three
steps that solve the subproblems separately. Cme of the key
benefits of such a modular approach is extensibility and
adaptability. Moreover, unlike the previous approaches, the
proposed technique considers task sharing between modes and
hardware sharing between rasks at the same time. We demonstrate
the usefulness of the proposed technique with a realistic multi-
mode embedded system that supports three modes of operation
with 3 different tasks.

Keywords
Hardware-software cosynthesis, multi-mode, multi-task

1. Introduction

An embedded system is called mulu-mode when it supports
multiple apphications by dynamically reconfiguring the system
functionality. Such reconfigurability is desirable to cope with
rapidly evolving standards and signat processing algorithms as
well as to enhance the hardware uglization significantly. A multi-
mode mobile terminal, for example. can be used for 2 PCS phone,
MP3 player, and VOD terminal, by manually selecting the mode.
We assume that an application defines a mode of the system and
the system runs a single application at a time.

A single mode, in general, is a real-ime mulli-task system
meaning that each application consists of a set of real-time tasks
that should be scheduled within time constraints. Therefore, a
critical design constraint of a multi-mode multi-task embedded
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system is to make all applications schedulable. Violation of this
schedulability constraint can be detected using the schedulability
tests applicable for real-time scheduling techniques(1]{2].

The main focus of this paper is to find a2 minimum-cost system
architecture that satisfies the schedulability constraints. given a
real-time scheduling technigue. We assume thar a task is specified
as an acyclic graph of which a node represents a function module
such as DCT(Discrete Cosine Transform). MC (Motion
Compensation), and so on. And there is a library of candidate
processing elements, processors and IP blocks, with given timing
information for each function module: how long it takes for each
processing element(PE) to execute the function. A hardware
implementation of a module may also be regarded as a processing
element which takes infinite amount of time for other function
modules. Then, the probiem becomes selecting the approprizte
processing elements and mapping function modules to the
selected processing elements. We define this problem as the
HW/SW cosynthesis problem.

While there have been some research efforts for cosynthesis of
multi-task systems[3]{4], only a few research results exist for
multi-mode multi-task systems[S]. A naive approach of applying
the cosynthesis echniques of multi-task systerns directly to each
mode separately is not optimal if a task is common in muitiple
modes. Therefore, the approach proposed in [5] considers the task
sharing effect. Given 1ask sets and processing elements, they
examine the schedulability of each mode assuming that all tasks
are run in a processor. If the schedulability constraint is violated,
they single out the best task and the amount of execution time to
be reduced to make all modes schedulable. They reduce the sk
execution time by implementing some code fragments to hardware
component. However, they do not consider the resource sharing
possibility between tasks so that they determine the best function
module for hardware implementation separately for each selected
task.

Compared with this previous approach, the proposed lechnique
differs in two aspects, We address two issues at the same time:
which processing elements to choose and which functional
module to implement in hardware. Second, we consider the
possibility of hardware resource sharing between tasks.
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The rest of the paper is organized as follows. [n the next section.
we state the problem and assumptions more clearly and present an
example multi-mode multi-task system, experimented in this
paper. Section 3 presents the structure of the proposed cosynthesis

framework and section 4 explains the proposed algorithm in detail.

And some experimental results are shown in section 5. We draw
conclusion in section 6.

2. Preliminaries

In this section, we defire some notations and terminologies and
state the cosynthesis probiem clearly with an example multi-mode
system

A multi-mode system I7 consists of a fixed number of modes {/7;}
ot II={IT;, Iy, f1;,...}. Each mode IT includes a number of tasks
{7} and cach task 7, is composed of modules {m,} that are
functional blocks. The period T; and deadline Dy of each task 7

are defined separately for each mode I7,. In case of a sporadic task.

T; may be set as the minimum inter-arrival time between
successive requests.

We are also given a library of candidate processing elements
(PE's) {p.} that includes microprocessors, IPs, and ASIC core
implementations of function modules. For each processing
element p,, its cos! ¢, and the Worst case execution time f,,; of
module m1, on p,, are assumed to be given for each module.

Then, the cosynthesis problem is to select a set of processing
clements, PE={p,}. and to find a mapping ¢ Em}->{p,} and
scheduling of tasks {7} to minimize the total cost of processing
elements while satisfying the schedulability condition. Depending
on which real-time scheduling technique is used, we use the
appropriate schedulability test. We let si(t.PE) be the schedule
length of task 7; on the selected processing elements. Then. the
utilization of mede /1. U ; (PE) . becomes

si(T;, P)
Unp= 3 —t— o

-
1€l v

For instance, if 2 rate-monotonic scheduling technique is adopted,
the schedulability test compares this utilization value with
1

(2% -1) where n is the number of tasks[1].

Figure | shows a real-life example of multi-mode embedded
system experimented in this paper. The system supports 3
different modes of operation: video phone (77)), video player (J1),
and MP3 player (/T;). On the other hand, there are 5 different
tasks: H.263 encoder (T;), H.263 decoder (733, MP3 decoder (7).
G.723 encoder (7s), and G.723 decoder (15). Figure 1{a) shows
which tasks compose which mode of operation. For instance, the
video phone mode runs 4 tasks {;,T2.7;,7s) concurrently.

The task period T, is dependent on the mode. Task 7in 17, mode
is scheduled twice as frequent as in [7; since the task decodes 20
frames per second in the video player mode 71, while it decodes
10 frames in f7;. In this example, the task deadlines are set equal
10 the task periods. In case of audio encoder/decoder tasks. we
assume that each invocation processes a buffered packet of 25ms
voice samples to reduce the context switch overhead.

Each task is specified by an acyclic graph as shown in Figure 1(b}.

Note that three function modules are shared between tasks T; and

73 In the graph, the annctated number on ¢ach arc indicates
communication overhead to be counted if the source module and
the sink module of the arc are mapped onto different processing
elements. We do not show the graphs for tasks 7, and 7; assuming
that they will not be broken down into multiple processing
elements,

Mode I I I

Task T T2 Ty Ts T2 T3 T

Period 100 ) 100 § 25 25 50 |40 | 40

Deadiine | 100 [ 100 | 25 25 50 140 ( 40

(a)

(b)
Po(HW) : time(cost) Pi(100} | PASOD
ME ME,.:17(100) 518 259
Diff - 5.2 2.6
DCT DCT,..5.6(20) 17 85
Q Cnd 5(24) 114 57
VLC VLC,..6(200 16 ]
deQ de0,,.:2(10) 4 12
IDCT IDCT,,:5.8(20) 18 9
MC MC:2.2010), MC,,,2:1(30) 72 36
PD1 - 44 22
PD2 - 07 04
HD - 3 1.5
deMQ deMQ,.:0.4(10) 12 0.6
IMDCT IMDCT,,:2(30) 57 29
FB FB,.;5(3} 10.2 5.1
T - 16 08
Ts - 18 0.9
©

Figure 1. An example multi-mode embedded system: (a)
Modes of the system, and task periods and deadlines that
depend on modes (b) Tasks specified by acyclic graphs (¢)
Module-PE profile table

Figure 1(c) shows the candidate processing ¢lements and their
cost and timing information. This table is called a module-PE
profile table. The third and the fourth column indicate that there
are two candidate microprocessors. We obtain the timing
information for processing element P, from running the real code
with the Armulator{6] assuming 500MHz ARM processor.

134



Processing element P, is about twice faster, bul nine times more
expensive. The first column lists the hardware implementations
that will be regarded as separate precessing elements. For each
hardware implementation, the worst-case execution time and the
hardware cost are given. For instance, MC),.; has the value of 2.2
(msec) for the worst-case execution time and [0 for the cost, We
admit that the numbers are not from the exact measurements.
Packet decoding blocks PD1 and PD2, and Huffman decoding
block HD have no hardware implementation.

3. Proposed Cosynthesis Framework

The cosynthesis problem involves three subproblems: selection of
appropriate processing elements. mapping and scheduling of
function modules to the selected processing clements. and
schedule analysis. The proposed cosynthests framework defines
an iteration loop of three steps that attack the subproblems
separately as depicted in Figure 2. The inputs 10 the cosynthesis
framework are a library of candidate processing elements and a
module-PE profile tabie as well as input task graphs.

The iteration starts with the module-PE allocation controller. The
module-PE allocation conmoller selects a set of processing
elements {p,} from the input candidate processing elements {p,,}
and constructs a reduced medule-PE profile table that includes the
selected processing elements only. This step is most eritical since
design objectives are considered when selecting the appropriate
processing eiements. I the design objective is to minimize the
cost, we first select the cheapest processor first. The detailed
mechanism will be explained in the next section.

The role of the next step is to schedule the acyclic graph of each
task to the selected processing elements in order to minimize the
schedule length, While the task graphs are given as inputs, the
reduced module-PE profile table is obtained from the PE
Aljocation Conwroller step. Since this is a typical problem of
heterogeneous multiprocessor (HMP) scheduling, we use any
heterogenecus scheduler in this step. ‘We obtain the schedute
result and the schedule length si(%,.PE) for task 7. We apply this
step for each task graph separately. An interesting observation in
this stép is that the scheduler may not consume all selected
processing elements to further reduce the system cost if possible.

The next step is the performance evaluation step. It first checks
whether the design constraints are satisfied. Based on the schedule
lengths of all tasks obtained from the previous siep. we compule
the utilizaon factors for schedulability analysis. If the
schedulability constraint is satisfied, it may end the iteration and
record the scheduling results. In case madeoffs between multiple
objectives are searched. it records the schedule resuits and restarnts
the iteration until all desired number of optimal points are
collected. If any design constraint is violated, it passes the
scheduling results and violation information to the PE Allocation
Conrroller to select other processing elements. More detailed
discussion can be found elsewhere [71.

One of the key benefits of such modular approach is extensibility.
Without modification of the core mapping and scheduling step,
we can add more design constraints to the performance evaluation
step. More processing elements can be added to the PE Allocation
Controller seamlessly. Even multiple design objectives can be
considered without modifying the core mapping and scheduling
step.

Second benefit is adaptability. We can easily change the mapping
and scheduling algorithm even though our implemeniation uses a
specific HMP scheduler, called the BIL scheduler[8), based on a
list scheduling heuristic. It is reported that this specific scheduler
performs reasonably good while time complexity is order of
magnitude faster than other well-formulated algorithms. Another
adaptation can be found in choosing the right schedulability test
for a given real-time scheduler. Onty performance evaluation step
is modified to use the modified schedulability test.

Task
graphs

Y ¥
Heterogeneous
Muitiprocessor
Scheduier

Time Table

PE Allocation
Controller

candidate
Processor
elements

scheduling
result

Figure 2. The proposed cosynthesis framework
3.1 Time Complexity

The worst case iteration counts of the proposed algorithm is p
where p is the total number of the candidate processing elements
because it adds one processing element at a time. For each
iterarion, we czll the HMP scheduler pxV, times where p, is the
wumber of remaining candidate processing elernents and N, is the
number of tasks. To select the best processing element, we call the
HMP scheduler once for each candidate processing elemenm even
though we can prune the search tree drastically in real
implementztion. if we let the time complexity of the HMP
scheduler a5 §, the totzl time complexity becomes O(Sp*N,). The

-ume complexity of the HMP scheduler depends on the size of the

task graphs and the number of selected processing elements.

Even for a single mode system, the proposed technique has more
advantageous in terms of time complexity than other previous
approaches such as genmetic algorithms and integer linear
programming. 1t is well-known that the ILP approach is
prohibitively complex to solve even teasonable size problems.
MOGACI4] uses a genetic algorithm 10 solve cosynthesis problem
for multi-task systems. It has much larger time complexity than
ours due to two main reasons. First. the problem size is
proportional to the number of tasks while the time complexity is
proportional to the number of tasks in our proposed zpproach. If
the problem size grows, the time complexity of a genetic
algorithm grows much faster in general. Second. 10 satisfy the
schedulability constraint. they consider a hyper.period that is the
least common multiple of the tasks periods. If the task periods are
different cach other, the hyper-period can be huge and the
probiem size can be huge proportionally. On the other hand, the
proposed algorithm uses the schedulability test without problem
size increment, assuming that a real-time operating system is used.
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4. Processing Element Selection

In this section, we explain how the PE allocation controlier selects
the processing elements to achieve the design objectives. For
simplicity. we assume that the design objective is to minimize the
system cost. And we use a simple example to show how the
algorithm proceeds.

Consider an example of Figure 3 that has two modes of operation
and two different tasks. Mode I7, needs two tasks while mode T,
needs the second task only. Two tasks consist of three function
modules respectively, while two function modules are shared
between two tasks. We assume that the period of zask, and rask; in
mode I7; is 40 and 60 respectively, and fask; in mode fT» 30.
There are two candidate processors and 6 different hardware
implementations for the constituent function modules as shown in
the module-PE profile table of Figure 3(b).

Since the design objective is to minimize the system cost, initially
the PE Allocation Controller allocates the cheapest processing
element: P, in this example. The reduced module-PE profile table
can be depicted as Figure 3(c) where infinite time indicates the
comesponding processing element is not selected. Consequently
the HMP scheduler maps all modules onto the PE's of minimum
cost P; as displayed in Figure 3(d). We oblain two sepasale
scheduling results for two task graphs.

I 2
sask; | task; | rasky
Period 40 60 30
| Deadline | 40 | 60 | 30
2

02020102020

1ask. task;
(a)
PAHWY.time(cost) P 100P60 Py P Pr
A Apa1(12) 7 2 Alw]| 7]
B | By 25)Buma {15y | 8 3 B|es! 8 | o0
C | Crur2(10),Chuz: 1203 | 10 | 5 Cle={10] e
D Dy, 4(10) 16 | 5 Djw|16]
(b} )
H 15 25 7 15 Ll
PrLA(i ':B'."I“"Cv'—l [ ATB' [D ]
task, a5k
[C)]

Figure 3. (a) Modes and task graphs (b) Module-PE profile
table (c) Imitially reduced module-PE profile table (d}
Scheduling results

The next step is the performance evaluation step that tests if tasks
are schedulable. As discussed earlier, it is utilizarion that is a
measure to determine the schedulability for a given real-time
scheduler such as rate-monotenic, earliest deadline first and so on.
If the utilization becomes larger than the given utilization
consiaint then the evaluation fails and more PEs need to be
allocated. From the scheduling result in Figure 3(d). utilization
Un

1

25 31
f I Lld(=—=+— d Upp, becomes
of mode T1; becomes ( i ) and Upy,

31 .
1.03 (=§ ). If we assume that the utilization constraint is 1.0,

we should allocate more PE's in order to reduce the scheduling
length of all tasks until utilization constraint is satisfied for al]
tasks.

Now, we arrive at the core of the selection technique. Among
many candidate processing elements, we want to select another
PE, which reduces the task execution times as much as possible,
but minimizes the cost increment. We define the expected
utilization decrement(EUD) and the expected cost incremenyECT)
for each candidate processing element. Furthermore, we define the
slack as the difference berween the utilization constraint ¢~ and
the current utilization in order 10 avoid reducing the utilization
factor too much with more expensive PE.

Stackp, = U, (PEY-U" ().

While ECHp,) is simply the cost of processing element p,.
EUD(p,) is defined as the difference berween the uiilization
before allocating p,, and the utilization after allocating p,.

EUD(p,)= Y min(Up, (PE) = Up, (PE U (p, ) Slackn, ) (3).

Nl
schedule length EUD
task; rask; ELD EC ECI
A 21 pai 0.17 12 0.014
B 24 31 0.03 5 0.005
B 23 31 0.05 15 0.003
Cim 20 31 0.125 10 0.013
Chm: 19 31 0.15 20 0.008
Dy 25 24 0.15 15 0.010
P, 10 10 0.17 60 0.003
@
Py T P, P; 1 11 2)
A 1 7 oo £, _A_l
Bl =8 1= AlL_bB:lic:
c hnd 10 o task,
b hnd 16 hind 1 i1 27
M
. EUD . "
Figure 4. (a) value for all candidate processing elements

ECI
(b) Modified module-PE profile table after A,, is selected (c)
Scheduling results

After computing EUDs and ECIs of all PE's. we choose an entry

that has the largest ?é_? value among unselected PE's since the

utilization is expected to decrease sigrificantly with minimal cost
increase. And we modify the reduced module-PE profile table and
pass it to the HMP scheduler. It is not guaranteed however that

136



the modules are mapped to the newly sclected PE. Modules will
be scheduled onto the PE only when the total schedule length s
actually reduced considering communication overheads.

Figure 4(a) represents EUD and ECI values of candidate
processing elements at the onset of the second iteration. For

example, EUD(A;,) is the sum of min(!.l4—(%+-§%),0.l4) of

mode [T, and mjn(l.OS—%‘0.0B) of mode I7;. In this example.

Ap, is chosen since its ratio is the largest. The HMP scheduling
result is shown in Figure 4(c). Since we can schedule all tasks
within the utilization constraint, we exit from the iteration loop.

The multi-function problem[9) is a cosynthesis problem to
support multiple functions or applications of which only one is
executed at any instant. Since the problem allows each mode or
application to have one task, it is a sub-problem of the cosynthesis
problem discussed in this paper. The fact that each mode has one
1ask enables us not 10 compute utilization. Instead of utilization,
the schedule length of each task can be used 10 compute expected
utilization increment. The other p{rocedures remains as described
in the previous section.

5. Experimental Results

We apply the proposed technique (o the muiti-mode embedded
system described in section 2. The HW speed and HW cost
information is reasonably estimated while not obtained from real
implementation.

Fer comparison, we first apply the proposed cosynihesis
algorithm for each mode of operation separately and add up the
estimated system cost at the end. Table | shows which processing
elements are selected and what is the resultant system cost. While
processor P, is commonly selected, different hardware
implementations are sefected for video phone and video player
applications. As a result. 5 processing elements are selected and
the sysiem cost becomes 235.

Tabie 1. Results without considering multi-mode multi-task

Mode Used PE's Cost
video phone ME}, IDCT Py 220
video player MCy, FBuo P 115
MP3 player P, 100

Total MEy IDCT1n P1, MCpp, FBiw | 235

Now, we apply the proposed aigorithm 1o all modes together
considering the resource sharing possibility. As shown in Table 2,
the video player mode sclects a different set of hardware
implementations. lnstead of selecting Motion Compensation and
Filter Bank blocks, it selects IDCT block for HW implementation
since the IDCT HW is already sclected in the video-phone mode.
Since resource sharing is successfuily exploited in the proposed
technique, the total system cost is reduced to 220.

The proposed algorithm has been implemented in C++ on a
codesign framewerk(10). It takes 0.1 seconds with Pentium 667
MHz processors. Considering the problem size of 3 modes. 3
tasks, 16 function modules. and 13 processing elements, the time
complexity is reasonable.

Table 2. Results with considering multi-mode multi-task

Mode Used PE's Cost
video phone ME,., IDCT,,. P; 220
video player IDCT,.. Py 120
MP3 player P, 100

Total ME,.. IDCT,.. P; 220

We apply the proposed technique to the examples used in Hou's
rescarch{3]. They have three processing elements and four tasks
which includes 10 modules. They tested three examples of task
combination, which we interpret them as three different modes of
operation: [I;, [T, and fI; as shown Table 3. If we use the same
task periods as {3], we cannot reduce system cost further since
independent application of the cosynthesis algorithm 1o each
mode also selects two processing elements. However if we
prolong the period of 1, and 7; in /T, to 2000, then the system cost
increases since the algorithm allocates Jower cost PE for tasks in
T, instead of reusing PE's allocated for tasks in the other modes.

Table 3. Hou's task graphs : period and system cost

i 1 i s
task, | tasky | task; | task; | task; | wask,
original period | 240 | 240 | 240 | 200 | 200 | 380
relaxed period | 240 | 240 | 2000 | 2000 | 200 | 380

cost without considering| cost with considering
muiti-mode multi-mode
original period 170 170
- 1
|Teiaxed period | 190 170

6. Conclusions

In this paper, a HW/SW cosynthesis framework is proposed for
multi-mode multi-task ‘embedded systems with real-time
constraints. The proposed iterative consymthesis procedure
consists of three steps: selectaon of processing elements including
ASIC core implementations, mapping and scheduling of task
grapiis onto the selected processing elements. and schedulability
test.

Unlike the previous approaches. we take into account of task
sharing between operation modes as well as HW resource sharing
between tasks. As a result, the proposed algorithm achieves about
10% reduction of system cost with an example multi-mode
embedded system. compared with an approach without
considering the resource sharing opportunities. Since the time
complexity of the proposed algorithm is only linear to the number
of tasks. it is applicable for large size applications.

The key benefits of the proposed framework are extensibility and
adaptability. Even though we concern about the schedulability
and the system ¢ost only in this paper. more design constraims
and design objectives can be easily augmented. The main
difficalty of using this approach to practical system design is
constructing the module-PE profile table, which is assumed to be
given in this paper.
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